科学研究
学术报告
Stable Patterns in Reaction-Diffusion Systems with Mass Conservation
邀请人:项杏飞
发布时间:2024-01-16浏览次数:

题目:Stable Patterns in Reaction-Diffusion Systems with Mass Conservation

报告人:Prof. Yoshihisa Morita (Emeritus Professor of Ryukoku University,Joint Research Center for Science and Technology)

时间: 2024年1月18日 星期四 下午13:30-14:30

地点:ZOOM会议室

Zoom ID: 999 571 271 58;  Password:123456

Zoom meeting link:  https://zoom.us/j/99957127158

报告摘要:In the field of cell polarity certain reaction-diffusion systems with mass conservation are employed to describe localized patterns. In this talk we begin with reviewing mathematical results related to the existence of solutions representing pinning and polarity for a certain class of two-component reaction-diffusion systems with mass conservation. Subsequently, we explore a 4-component reaction-diffusion system with mass conservation, proposed as a model describing the segregation pattern observed in the asymmetric cell division of C. elegans embryos. The prior work (M-Seirin-Lee 2021) shows that after the reduction of the stationary problem to a two-component elliptic system with nonlocal terms, the reduced system has a variational structure allowing a nonconstant stable solution in a certain parameter regime. We develop this research and prove that there exist solutions with monotone profile in cylindrical domains, representing a segregation pattern, together with a sharp energy estimate for the solutions in a specific parameter regime. This research is a recent collaboration with Prof. Y. Oshita (Okayama University).

欢迎各位参加!