题目: Transient Spatio-temporal Dynamics Induced by Hopf and Steady State Bifurcations in a Plant-herbivore Model
报告人:王林 教授 (University of New Brunswick, Canada)
时间:6月26日(星期日),上午 9:00-10:00
王林,加拿大University of New Brunswick教授,主要研究微分方程、动力系统以及在生物学、生态学、流行病学、神经科学等领域的应用。他关于Cohen-Grossberg神经元模型方面的重要工作迄今被引用超过500次,近年来,王林教授在恒化器数学建模、数学流行病学以及病毒动力系统领域做出了有影响力的工作,迄今为止,他已在SIAM J. Appl. Math.、Journal of Differential Equations、Journal of Mathematical Biology、Journal of Theoretical Biology、Mathematical Biosciences、SIAM Journal on Matrix Analysis and Applications等国际应用数学以及微分方程、生物数学领域top期刊上发表学术论文五十余篇。
A diffusive plant-herbivore system with Neumann boundary conditions and Dirichlet boundary conditions is investigated. Local and global stability of spatially homogeneous steady states are established. We derive the conditions for the occurrence of Hopf bifurcation and steady state bifurcation and provide geometrical methods to locate the bifurcation values. A large variety of different types of short-term behavior, including oscillations both in space and in time, or oscillations with different amplitudes, are discussed.