题目:Dynamics of a Data Based Ovarian Cancer Growth and Treatment Model with Time Delay
报告人:况阳教授 (美国亚利桑那州立大学)
地点:致远楼105室
时间:12月6日(星期二) 下午3:00-4:00
况阳,美国亚利桑那州立大学教授,生物数学与时滞微分方程研究领域著名专家。况阳教授1988年于加拿大阿尔贝塔大学获博士学位并旋即进入美国亚利桑那州立大学工作至今,并分别于1992年、1997年晋升为副教授、教授。况阳教授主要研究领域为生物数学、医学数学模型与时滞微分方程,他在1993年出版的专著《Delay differential equations with applications in population dynamics》自出版以来,一直是时滞微分方程与种群动力系统领域的经典文献;迄今为止况阳教授在微分方程与生物数学重要学术期刊发表论文150余篇,总被引用数近万次,特别地,况阳教授近年来在糖尿病治疗数学建模、癌症数学模型等医学数学模型领域作出了有影响的工作。况阳教授担任生物数学领域SCI期刊Mathematical Biosciences and Engineering主编、是Bulletin of Mathematical Biology、Journal of Biological Systemss和International Journal of Biomathematics等SCI期刊编委。
报告摘要
We present a simple model that describes ovarian tumor growth and tumor induced angiogenesis, subject to on and off anti-angiogenesis treatment. The tumor growth is governed by Droop’s cell quota model,a mathematical expression developed in ecology. Here, the cell quota represents the intracellular concentration of necessary nutrients provided through blood supply. We present mathematical analysis of the model, including some local and global stability results. The mathematical model can be employed to fit both on-treatment and off-treatment preclinical data using the same biologically relevant parameters. We also state two open mathematical questions.
欢迎各位老师和同学参加!