科学研究
学术报告
A Method to Analyze Certain Fast-Slow Motions in Dynamical Systems
发布时间:2017-05-12浏览次数:

题目:A Method to Analyze Certain Fast-Slow Motions in Dynamical Systems

报告人:郁培 教授 (Western University)

时间:5月12日(星期五),上午 10:30-11:30

地点:致远楼102室


郁培教授于1982年获得上海交通大学学士学位,之后留学加拿大滑铁卢大学,分别于1984年和1986年获硕士和博士学位,现任加拿大西安大略大学应用数学系教授、博导。郁教授是常微分方程与动力系统领域著名专家,在微分方程定性、分支理论等做出了杰出的工作,曾获安大略省长杰出研究奖,和合作者在《SIAM Review》等杂志已发表190余篇论文以及Springer等出版社出版了多部专著,其中《Normal forms, Melnikov functions and bifurcation of limit cycles》被列为Applied Mathematical Sciences第181册,2012年在Springer出版。郁培教授任《Journal of Applied Analysis and Computation》、《InternationalJournal of Bifurcation and Chaos》与《Communications in Nonlinear Science and Numerical Simulation》等国际知名杂志编委。


报告摘要

In this talk, we present a method to analyze certain fast-slow motions in dynamical systems. For singular perturbed dynamical systems, the well-known Geometric Singular Perturbation Technique (GSPT) is usually applied to find the special limit cycles -- fast-slow periodic solutions. However, many practical problems may not be able to be put in the form of singular perturbed equations, but they still exhibit fast-slow motions. In that case, based on dynamical system theory, we developed a method to identify and analyze certain fast-slow motions. We will use biological examples to give a comparison between the GSPT and our method.

欢迎各位老师和同学参加!