题目:On Weyl's Embedding Problem in Riemannian Manifold
报告人: 陆思远 (McGill University 数学系)
地点:致远楼102室
时间:2017年5月23日 PM 1:30-2:30
Abstract: We consider a priori estimates of the Weyl's embedding problem of $(/mathbb{S}^2, g)$ in general $3$-dimensional Riemannian manifold $(N^3, /bar g)$. We establish mean curvature estimate under natural geometric assumption. Together with a recent work by Li-Wang, we obtain an isometric embedding of $(/mathbb{S}^2,g)$ in Riemannian manifold. In addition, we reprove Weyl's isometric embedding theorem in space form under the condition that $g/in C^2$ with $D^2g$ Dini continuous.
欢迎各位参加!