科学研究
学术报告
The Broucke-Henon Orbit and the Schubart Orbit in the Three-body Problem
发布时间:2018-01-18浏览次数:

题目:The Broucke-Henon Orbit and the Schubart Orbit in the Three-body Problem

报告人:严夺魁 副教授 (北京航空航天大学 数学与系统科学学院)

地点:致远楼101室

时间:2018年1月18号 下午4:00-5:00


报告摘要:

In 2000, Chenciner and Montgomery proved the existence of the figure-eight solution in the planar three-body problem with equal masses by using the variational method. Since then, a number of new periodic solutions have been discovered and proven to exist. A workshop on Variational Methods in Celestial Mechanics was organized by Chenciner and Montgomery in 2003 to address the possible applications of variational method in studying the Newtonian N-body problem, while several open problems were proposed by the attending experts. The existence of the Broucke-Henon orbit is one of these open problems, which was proposed by Venturelli. Actually, he noticed that the Schubart orbit with collision is on the closure of the homology class (1, 0, 1). It is not clear if the Broucke-Henon orbit is a minimizer in the homology class (1, 0, 1).

By introducing a new geometric argument, we show that under an appropriate topological constraint, the action minimizer must be either the Schubart orbit or the Broucke-Henon orbit. This geometric argument can be applied to many orbits in the three-body and four-body problem.

个人简介:

严夺魁,北京航空航天大学数学与系统科学学院副教授,主要研究领域是N体问题,指标迭代理论,哈密顿系统等。已在JDE,DCDS-A,Cele. Mech. Dyn. Astr.等国际期刊上发表10余篇学术论文。

欢迎各位参加!