科学研究
学术报告
John-Nirenberg Inequality and Collapse in Conformal Geometry
发布时间:2018-12-17浏览次数:

题目:John-Nirenberg Inequality and Collapse in Conformal Geometry

报告人:李宇翔 教授 (清华大学)

时间:2018年12月17日16:00-17:00

地点:致远楼101室

Abstract: Let $g$ be a metric over $B$ which is conformal to $g_0$.We assume $/|R(g_k)/|_{L^p} <C$, where $R$ is the scalar curvature and $p/geq /frac{n}{2}$.We will use the John-Nirenberg inequality to prove that if $vol(B,g_k) /rightarrow 0$, then there exists $c_k /rightarrow+/infty$, such that $c_ku_k$

converges to a positive function weakly in $W^{2,p}_{loc}(B)$. As an application, we will study the bubble tree convergence of a conformal metric sequence with integral-bounded scalar curvature.

欢迎广大师生参加!