题目:John-Nirenberg Inequality and Collapse in Conformal Geometry
报告人:李宇翔 教授 (清华大学)
时间:2018年12月17日16:00-17:00
地点:致远楼101室
Abstract: Let $g$ be a metric over $B$ which is conformal to $g_0$.We assume $/|R(g_k)/|_{L^p} <C$, where $R$ is the scalar curvature and $p/geq /frac{n}{2}$.We will use the John-Nirenberg inequality to prove that if $vol(B,g_k) /rightarrow 0$, then there exists $c_k /rightarrow+/infty$, such that $c_ku_k$
converges to a positive function weakly in $W^{2,p}_{loc}(B)$. As an application, we will study the bubble tree convergence of a conformal metric sequence with integral-bounded scalar curvature.
欢迎广大师生参加!