科学研究
学术报告
A New Multi-Component Diffuse Interface Model with Peng-Robinson Equation of State and its Scalar Auxiliary Variable (SAV) Approach
发布时间:2019-06-26浏览次数:

题目:A New Multi-Component Diffuse Interface Model with Peng-Robinson Equation of State and its Scalar Auxiliary Variable (SAV) Approach

报告人:乔中华 教授 (香港理工大学)

地点:致远楼101室

时间:2019年6月26日上午9:00--10:00

摘要:A new multi-component diffuse interface model with the Peng-Robinson equation of state is developed. Initial values of mixtures are given through the NVT flash calculation. This model is physically consistent with constant diffusion parameters, which allows us to use fast solvers in the numerical simulation. In this paper, we employ the scalar auxiliary variable (SAV) approach to design numerical schemes. It reformulates the proposed model into a decoupled linear system with constant coefficients that can be solved fast by using fast Fourier transform. Energy stability is obtained in the sense that the modified discrete energy is non-increasing in time. The calculated interface tension agrees well with laboratory experimental data.

报告人介绍: 乔中华教授,香港理工大学应用数学系博士生导师。乔中华教授博士毕业于香港浸会大学,师从世界著名计算数学家,教育家汤涛院士。乔中华教授主要从事非线性偏微分方程的高效数值算法和相场方程的大时间步长数值方法研究;申报获批政府及科研机构研究课题10余项,发表顶级期刊的学术论文四十余篇;并获得2013年香港政府研究资助委员会青年成就奖和2018年香港数学会杰出青年学者奖。

欢迎各位参加!