科学研究
学术报告
An Inexact Proximal Augmented Lagrangian Framework with Arbitrary Linearly Convergent Inner Solver for Composite Convex Optimization
发布时间:2019-12-18浏览次数:

题目:An Inexact Proximal Augmented Lagrangian Framework with Arbitrary Linearly Convergent Inner Solver for Composite Convex Optimization

报告人:瞿铮 博士(香港大学)

地点:致远楼101室

时间:2019年12月18日 星期三 13:30-14:30

摘要:We propose an inexact proximal augmented Lagrangian framework with explicit inner problem termination rule for composite convex optimization problems. We consider arbitrary linearly convergent inner solver including in particular stochastic algorithms, making

the resulting framework more scalable facing the ever-increasing problem dimension. Each subproblem is solved inexactly with an explicit and self-adaptive stopping criterion, without requiring to set an a priori target accuracy. When the primal and dual domain

are bounded, our method achieves the best known complexity bounds in terms of number of inner solver iterations, respectively for the strongly convex and non-strongly convex case. Without the boundedness assumption, only logarithm terms need to be added. Within

the general framework that we propose, we also obtain the first iteration complexity bounds under relative smoothness assumption on the differentiable component of the objective function. We show through theoretical analysis as well as numerical experiments

the computational speedup achieved by the use of randomized inner solvers for large-scale problems.

欢迎各位参加!