科学研究
学术报告
Huber's Theorem for Conformally Compact Manifolds
发布时间:2021-10-25浏览次数:

题目:Huber's Theorem for Conformally Compact Manifolds

报告人:李宇翔 教授 (清华大学)

地点:腾讯会议室

时间:2021年10月26日 08:00-09:00

摘要:Let Ω be a domain of a closed manifold $(M, g_0)$ with dim M>2. Let $g=u^\frac{4}{n-2}g_0$ be a complete metric defined on Ω. We will show that $M\setminus Ω$ is a finite set when $\int_Ω|Ric(g)|^\frac{n}{2}dV_g< +∞. such a result is not true if we replace ricci curvature with scalar curvature. we will discuss the properties of conformal metrics with $\|r\|_{l^\frac{n}{2}}<+∞$ on a punctured ball of a riemannian manifold , and give some geometric obstacles for huber's theorem in this case.

腾讯会议:https://meeting.tencent.com/dm/cVdY0N8Kg21c

会议 ID:390 358 712

All are welcome!