科学研究
学术报告
Some Wall-Crossing Techniques in Enumerative Geometry
发布时间:2021-10-25浏览次数:

题目:Some Wall-Crossing Techniques in Enumerative Geometry

报告人:周扬 青年研究员(上海数学中心)

地点:宁静楼115室

时间:2021年10月15日 上午10:00-11:00

摘要:The theory of Gromov-Witten invariants is a curve counting theory defined by integration on the moduli of stable maps. Varying the stability condition gives alternative compactifications of the moduli space and defines similar invariants. One example is epsilon-stable quasimaps, defined for a large class of GIT quotients. When epsilon tends to infinity, one recovers Gromov-Witten invariants. When epsilon tends to zero, the invariants are closely related to the B-model in physics. The space of epsilon's has a wall-and-chamber structure. In this talk, I will explain how wall-crossing helps to compute the Gromov-Witten invariants and sketch a proof of the wall-crossing formula.

欢迎各位参加!