[DF19] Jie Du and Qiang Fu, The Integral quantum loop algebra of gln, Int. Math. Res. Not. IMRN 2019, no. 20, 6179-6215.
[FL] Qiang Fu and Mingqiang Liu, Presenting affine Schur Algebras, Trans. Amer. Math. Soc. 371 (2019), 5487-5503.
[Fu19] Qiang Fu, On the hyperalgebra of the loop algebra $/widehat{/frak{gl}}_n$. J. Algebra 537 (2019), 245-277.
[FG] Qiang Fu and Wenting Gao, Presenting integral q-Schur algebras, Internat. J. Math. 30 (2019) no, 1, 1950002, 14pp.
[FS] Qiang Fu and Toshiaki Shoji, Positivity properties for canonical bases of modified quantum affine sln, Math. Res. Lett., 25 (2018), 535-559.
[Fu18] Qiang Fu, BLM realization for $/mathcal U_{/mathbb Z}(/widehat{gl_n})$, Commun. Contemp. Math. 20 (2018): 1750013, 35 pp.
[Fu17] Qiang Fu, Affine quantum Schur algebras at roots of unity, Internat. J. Math. 28 (2017), no. 7, 1750056, 18 pp.
[Fu16] Qiang Fu, BLM realization for Frobenius--Lusztig Kernels of type A, Math. Res. Lett. 23 (2016), 1329--1350.
[DF16] Jie Du and Qiang Fu, Small representations for affine q-Schur algebras, Algebr. Represent. Theory 19 (2016), 355--376.
[DF15] Jie Du and Qiang Fu, Quantum affine gln via Hecke algebras, Adv. Math. 282 (2015), 23--46.
[Fu15] Qiang Fu, BLM realization for the integral form of quantum gln. Commun. Contemp. Math. 17 (2015), no. 5, 1550019, 17 pp.
[Fu14a] Qiang Fu, Blocks of affine quantum Schur algebras. J. Algebra 419 (2014), 71--94
[Fu14b] Qiang Fu, Affine quantum Schur algebras and affine Hecke algebras. Pacific J. Math. 270 (2014), 351–366.
[Fu14c] Qiang Fu, Canonical bases for modified quantum gln and q-Schur algebras, J. Algebra 406 (2014), 30--320.
[Fu13] Qiang Fu, Integral affine Schur--Weyl reciprocity, Adv. Math. 243 (2013), 1--21.
[DFW12] Jie Du, Qiang Fu and Jianpan Wang, Representations of little q-Schur algebras, Pacific J. Math. , 257, (2012), 343-378.
[FY11] Qiang Fu and Qunguang Yang, On the structure of $End_{uk(2)}(Ωk^{/otimes r})$, J. Math. Phys. 52, 083507 (2011) .
[DF11] Jie Du and Qiang Fu, Quantum gln , q-Schur algebras and their infinite/infinitesimal counterparts, Progress in Mathematics, 2011, Volume 284, 93-119.
[DF10] Jie Du and Qiang Fu, A modified BLM approach to quantum affine gln, Math Z. 266 (2010),747–781.
[Fu09a] Qiang Fu, On Schur algebras and little Schur algebras, J. Algebra 322 (2009), 1637-1652.
[Fu09b] Qiang Fu, On bases for infinite little/infinitesimal q-Schur algebras, Arch. Math. 93 (2009), 305-313.
[DF09] Jie Du and Qiang Fu, Quantum gl∞, infinite q-Schur algebras and their representations, J. Algebra 322 (2009), 1516-1547.
[EF08] Karin Erdmann and Qiang Fu, Schur--Weyl duality for infinitesimal q-Schur algebras sq(2,r)1, J. Algebra 320 (2008), 1099-1114.
[Fu08a] Qiang Fu, Semisimple Infinitesimal q-Schur algebras, Arch. Math. 90 (2008), 295-303.
[Fu08b] Qiang Fu, Finite representation type of infinitesimal q-Schur algebras, Pacific J. Math. 237 (2008), 57-76.
[Fu08c] Qiang Fu, Tame representation type of infinitesimal q-Schur algebras, J. Algebra 320 (2008), 369-386.
[Fu07] Qiang Fu, Little q-Schur algebras at even root of units, J. Algebra 311 (2007), 202-215.
[DFW05] Jie Du, Qiang Fu and Jianpan Wang, Infinitesimal quantum gln and little q-Schur algebras, J. Algebra 287 (2005), 199-233.
[Fu05a] Qiang Fu, Monomial bases for little q-Schur algebras s(2,r), Algebra Colloq. 12 (2005) 413-430.
[Fu05b] Qiang Fu, A comparison of infinitesimal and little q-Schur algebras, Comm. Algebra 33 (2005), 2663-2682.