SCIENCE
SEMINARS
Numerical Method for the Maxwell Equations with Random Interfaces 
发布时间:2020-06-09浏览次数:

题目:Numerical Method for the Maxwell Equations with Random Interfaces

报告人:张凯 教授(吉林大学)

地点:腾讯会议室

时间:2020年6月9日 上午10:00-11:00

摘要:A robust numerical method via the shape derivatives and low-rank approximation is developed for computations of three-dimensional Maxwell's equations with random interfac-es. Based on a shape calculus, we estimate the statistical moments of the stochastic Maxwell equations in terms of perturbation magnitude. In order to capture the oscillations with high resolution near the interface, we adopt the adaptive edge element with third order polynomi-als to solve the deterministic equations approximating the expectation. For the second mo-ment, an efficient low-rank approximation based on pivoted Cholesky decomposition is pro-posed to compute the two-point correlation function to approximate the variance of stochastic Maxwell's equations. Numerical experiments are presented to illustrate our theoretical results.

This is the jointed work with Dr. Y.L. Hao (JLU), Prof. J.Z. Li(SUSTC), and Dr. F.D. Kang (CityU).

腾讯会议室

https://meeting.tencent.com/s/5FTCu4o3DQhZ

ID:581 187 865

密码:123456

报告人简介:张凯教授,吉林大学数学学院博士生导师,计算数学领域卓越青年学者。2006年获吉林大学博士学位,博士论文被评为吉林省优秀博士论文。2008年获得香港中文大学联合培养博士学位,2008年至2010年赴密歇根州立大学开展博士后研究,曾先后赴伊利诺伊州立大学,奥本大学等开展合作研究。主要研究兴趣为偏微分方程的数值解法,包括SPDE控制优化问题的数值方法、期权定价、随机麦克斯韦方程和随机声波方程的研究。先后主持国家自然科学基金等项目11项,发表论文50余篇,其中高水平SCI论文40余篇。

欢迎各位参加!