PEOPLE
Professor
Basic Information
Algebra and Number Theory
Professor
q.fu@hotmail.com
Fu Qiang
研究方向

 代数群, 量子群及其表示

教育背景

2004年     华东师范大学获博士学位,     博士导师为王建磐教授.


工作经历

2004.10-2007.6     同济大学数学系       讲师
2007.7-2010.12     同济大学数学系       副教授
2010.12-今            同济大学数学系        教授


论文与出版物

Book:

  1. [DDF] Bangming Deng, Jie Du and Qiang Fu,  A Double Hall algebra approach to affine quantum Schur--Weyl Theory, London Mathematical Society Lecture Note Series, Volume 401, Cambridge University Press, 2012.

Papers:

  1. [DF19] Jie Du and Qiang Fu, The Integral quantum loop algebra of gln, Int. Math. Res. Not. IMRN 2019, no. 20, 6179-6215.

  2. [FL] Qiang Fu and Mingqiang Liu, Presenting affine Schur Algebras, Trans. Amer. Math. Soc. 371 (2019), 5487-5503.

  3. [Fu19] Qiang Fu, On the hyperalgebra of the loop algebra $/widehat{/frak{gl}}_n$. J. Algebra 537 (2019), 245-277.

  4. [FG] Qiang Fu and Wenting Gao, Presenting integral q-Schur algebras, Internat. J. Math. 30 (2019) no, 1, 1950002, 14pp.

  5. [FS] Qiang Fu and Toshiaki Shoji, Positivity properties for canonical bases of modified quantum affine sln, Math. Res. Lett., 25 (2018), 535-559.

  6. [Fu18] Qiang Fu, BLM realization for  $/mathcal U_{/mathbb Z}(/widehat{gl_n})$, Commun. Contemp. Math. 20 (2018): 1750013, 35 pp.

  7. [Fu17] Qiang Fu, Affine quantum Schur algebras at roots of unity, Internat. J. Math. 28 (2017), no. 7, 1750056, 18 pp.

  8. [Fu16] Qiang Fu, BLM realization for Frobenius--Lusztig Kernels of type A, Math. Res. Lett. 23 (2016), 1329--1350.

  9. [DF16] Jie Du and Qiang Fu, Small representations for affine q-Schur algebras, Algebr. Represent. Theory 19 (2016), 355--376.

  10. [DF15] Jie Du and Qiang Fu, Quantum affine gln via Hecke algebras,  Adv. Math.  282  (2015), 23--46.

  11. [Fu15] Qiang Fu, BLM realization for the integral form of quantum gln. Commun. Contemp. Math. 17 (2015), no. 5, 1550019, 17 pp.

  12. [Fu14a] Qiang Fu, Blocks of affine quantum Schur algebras. J. Algebra 419 (2014), 71--94

  13. [Fu14b] Qiang Fu, Affine quantum Schur algebras and affine Hecke algebras. Pacific J. Math.  270 (2014), 351–366.

  14. [Fu14c] Qiang Fu, Canonical bases for modified quantum gln and q-Schur algebras, J. Algebra 406  (2014), 30--320.

  15. [Fu13] Qiang Fu, Integral affine Schur--Weyl reciprocity, Adv. Math.  243  (2013), 1--21.

  16. [DFW12] Jie Du, Qiang Fu and Jianpan Wang, Representations of little q-Schur algebras, Pacific J. Math. , 257, (2012), 343-378.

  17. [FY11] Qiang Fu and Qunguang Yang, On the structure of $End_{uk(2)}(Ωk^{/otimes r})$, J. Math. Phys. 52, 083507 (2011) .

  18. [DF11] Jie Du and Qiang Fu, Quantum gln , q-Schur algebras and their infinite/infinitesimal counterparts, Progress in Mathematics, 2011, Volume 284, 93-119.

  19. [DF10]  Jie Du and Qiang Fu, A modified BLM approach to quantum affine gln,  Math Z.  266 (2010),747–781.

  20. [Fu09a] Qiang Fu, On Schur algebras and little Schur algebras, J. Algebra 322 (2009), 1637-1652.

  21. [Fu09b] Qiang Fu, On bases for infinite little/infinitesimal q-Schur algebras, Arch. Math. 93 (2009), 305-313.

  22. [DF09] Jie Du and Qiang Fu, Quantum gl∞, infinite q-Schur algebras and their representations, J. Algebra 322 (2009), 1516-1547.

  23. [EF08] Karin Erdmann and Qiang Fu, Schur--Weyl duality for infinitesimal q-Schur algebras sq(2,r)1, J. Algebra 320 (2008), 1099-1114.

  24. [Fu08a] Qiang Fu, Semisimple Infinitesimal q-Schur algebras, Arch. Math. 90 (2008), 295-303.

  25. [Fu08b] Qiang Fu, Finite representation type of infinitesimal q-Schur algebras, Pacific J. Math. 237 (2008), 57-76.

  26. [Fu08c] Qiang Fu, Tame representation type of infinitesimal q-Schur algebras, J. Algebra 320 (2008), 369-386.

  27. [Fu07] Qiang Fu, Little q-Schur algebras at even root of units, J. Algebra 311 (2007), 202-215.

  28. [DFW05] Jie Du, Qiang Fu and Jianpan Wang, Infinitesimal quantum gln and little q-Schur algebras, J. Algebra 287 (2005), 199-233.

  29. [Fu05a] Qiang Fu, Monomial bases for little q-Schur algebras s(2,r), Algebra Colloq. 12 (2005) 413-430.

  30. [Fu05b] Qiang Fu, A comparison of infinitesimal and little q-Schur algebras, Comm. Algebra 33 (2005), 2663-2682.



科研项目
  1. 主持国家自然科学基金青年基金项目《小q-Schur代数的表示和仿射量子群》(10601037).

  2. 主持国家自然科学基金面上项目《代数群和量子群中的若干问题》(10971154).

  3. 入选教育部新世纪人才计划 (NCET-10-0628).

  4. 主持霍英东基金基础研究基金, (131004).

  5. 主持国家自然科学基金面上项目《量子群及相关代数的表示理论》(11271284).

  6. 主持优秀青年科学基金项目《代数群、量子群及其表示论》(11322102).


个人简介

   曾经于2005年2月到7月和2006年7月访问牛津大学, 并多次访问新南威尔士大学.  2007年入选同济大学优秀青年教师, 2010年入选同济大学英才计划中的青年教学科研骨干计划, 2012年入选同济大学英才计划中的攀登高层次人才计划.